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Lecture 4

Expectations of q-TASEP observables solve integrable many body 

systems which can be solved via variant of Bethe ansatz



Limit to directed polymers shows this is rigorous replica method

Also applies to discrete q-TASEPs, q-PushASEP, and ASEP
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q-TASEP:

Restrict to N particle state space

Generator acts on                as

Natural initial condition is step where

(When q=0, we recover the usual TASEP)
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q-Boson particle process:

N+1 site state space

Generator acts on                as

[Sasamoto-Wadati '98] stochastic representation of q-Bosons

[Balazs-Komjathy-Seppalainen '08] stationary 1/3 exponent
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Duality:  Suppose             and            independent Markov 

processes and                   . Then       and       are dual 

with respect to     if for all x, y, and t

Duality leads to hidden evolution equations for expectations 

of observables corresponding to the duality function.

•
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Theorem [Borodin-C-Sasamoto '12]: q-TASEP 

and q-Bosons              are dual with respect to

(convention that if               )

Proof: Suffices to show that
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Purpose of duality (for us):

   If                    then

Duality implies that for    fixed,           solves the

True evolution equation:
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True evolution equation splits according to number of particles

Encode          by an ordered list of particle locations

Example:
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We can encode true evolution equation in the    coordinates 

by writing 

k=1:  single particle, so          , then•
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For step initial data             so                and so too 

Claim: 

where 

Proof: Check free equation, zero boundary condition, and 

initial data.
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If ○

k=2: two particles, so •

If ○

Not constant coefficient, so unclear how to solve…

k>2: there are different equations for each type of 

clustering (i.e., many body interactions)

•
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Proposition: (Free evolution eqn with k-1 boundary conditions):

If                         solves

For all •

For all            such that •

For all            such that •

For all            , •

Then, restricted to           , 
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Theorem: For step initial condition (i.e.,          ) we have

Proof: Only new aspect is boundary condition. Applied to 

integrand brings out factor of            . Contour symmetry 

and integrand asymmetry shows integral is zero.
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Success in using moments to asymptotically study one-point 

distribution, though multi-point distributions remain open

Implies joint moment formulas. For example, if all a    
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True evolution equation also equivalent to a certain

q-deformed discrete delta Bose gas

with Hamiltonian

subject to Bosonic symmetry and zero boundary condition

Integrability (equiv. to free eqn with k-1 B.C.s) not obvious 

for this system (Note: not all delta Bose gases are integrable)
   Lecture 4 Page 15    



(Parallel) Geometric discrete time q-TASEP [Borodin-C '13]:

At q=0 -> parallel geometric TASEP with blocking 

[Warren-Windridge '09]
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(Sequential) Bernoulli discrete time q-TASEP [Borodin-C '13]:

At q=0 -> sequential Bernoulli TASEP [Borodin-Ferrari '08]

1)

2)

...3)
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q-TASEP joint moments satisfy various many body systems

Theorem [Borodin-C '13]: For 
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q-TASEP

satisfies:

Theorem [Borodin-C '11]: For q-TASEP with step init. cond.

scale 

and call                                           . Then as        ,                                       

                       where     solves the semi-discrete SHE:
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Partition function for a semi-discrete directed random polymer

[O'Connell-Yor 2001]

are independent Brownian motions
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satisfies

This is a discrete analog of the stochastic heat equation

where W is the space-time white noise.

The path integral is the Feynman-Kac solution

with
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The semi-discrete Brownian directed polymer is exactly solvable.

Theorem (Borodin-Corwin, 2011)   The Laplace transform of the polymer partition 
function         can be written as a Fredholm determinant

where

Corollary (B-C, B-C-Ferrari, 2011-12)   Set                                    For any 
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This leads to a rigorous derivation of 

and proof that logarithm of semi-discrete SHE has GUE 

Tracy-widom scaling limit under        scaling (Ferrari's talk)

Under weak noise scaling [Alberts-Khanin-Quastel '12] the 

semi-discrete SHE converges weakly to the continuum SHE 

[Moreno Flores-Remenik-Quastel '13]:

Thus a second proof of SHE Laplace transform Fredholm det.
[Sasamoto Spohn '10, Amir-C-Quastel '10, Calabrese-Le Doussal-Rosso '10, Dotsenko '10]
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Feynman-Kac representation leads to semi-discrete polymer 

[O'Connell-Yor '01] and continuum random polymer. 

Replica method [Molchanov '86, Kardar '87] shows that joint 

moments                                    satisfy delta Bose gases

Both can we written as free evolution eqn. with k-1 B.C.'s 

and solved by limits of the q-TASEP nested contour formulas.

However, these moments grow like                  and hence 

do not characterize the distribution of     (replica trick).
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General coupling const. version (c<0 repulsive, c>0 attractive)

is solved (in             ) by the nested contour integral formula

where     is integrated over           , with 
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Many body systems approach reveals parallel formulas. 

Is there a higher structure which accounts for this?

Macdonald processes

q-TASEP

Continuum SHE

ASEP

Many body systemsCoordinate 

bethe 

ansatz

???

???
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Asymmetric simple exclusion (particle) process

Particles attempt continuous time random walks, jumping 

left over bond         at rate        and right at rate      . If 

the destination is occupied, the jump is suppressed.

State space for k particles: 

Generator 

e.g. k=1
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Asymmetric simple exclusion (occupation) process 

Assume that  so                                                                         and

Dynamics: for each y

Define:
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Theorem [Borodin-C-Sasamoto '12]: For any k>0, the ASEP 

particle process        (with p<->q switched) and the ASEP 

occupation process         are dual with respect to

If all bond jump rates parameters          then the processes 

are also dual with respect to
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When p=q, the H-duality describes correlation functions 

and is much more general.

•

When all        , H-duality shown previously [Schutz '97]

via related quantum spin chain           - symmetry.

•

When k=1, the G-duality is Gartner's microscopic ASEP 

Hopf-Cole transform.

•

Remarks on the duality.

Proof: Directly from studying the effect of applying the 

Markov generators to the duality function.
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From duality to determinants:

Duality lead to system of ODEs for 1.

For          / step initial data, solve ODEs via a "nested 

contour integral ansatz" (relies on integrability)

2.

Combine integral solutions to yield formula for 3.

Deform nested-contours to coincide and track residues4.

Form generating function (   -Laplace transform) and 

identify Fredhold determinant (Mellin Barnes/Cauchy type).      

5.
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Let's focus on steps 1 and 2.

Duality provides a non-trivial coupled system of ODEs:

Since 

But how to solve? For k>1 the generator depends on    !

First idea (from Bethe, cf. Tracy-Widom ASEP papers): 

Try to solve "free" system of ODEs on all of      with 

boundary conditions on      . 

   Lecture 4 Page 32    



Proposition: If                        solves

(Note: Since system of ODEs is infinite, we must also impose an exponential growth condition; and we 

can weaken initial data to weakly converge, as is useful in our contour integral formulas we find)
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solves the "free" evolution eqn. for all             .                

Assume from now on step initial condition (         ) and  

How to solve this system of ODEs?

Proof: Check by residues that 
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For        we use an idea inspired from the theory of 

Macdonald processes -> "nested contour integral ansatz"

Theorem [Borodin-C-Sasamoto '12]: For all 

Restricting to           yields:
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Suitable combinations of                     yields                  

Theorem [Borodin-C-Sasamoto '12]: For step initial condition 

ASEP with          and p<q (hence                        )
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Corollary [Tracy-Widom '09, Borodin-C-Sasamoto '12]:

Recovering the celebrate Tracy-Widom / Johansson result.

Mellin Barnes Fredhold det. new and easy for asymptotics•

Inversion of Cauchy Fredholm det. equivalent to initial det. 

in [Tracy-Widom '09]

•

Completely parallel to q-TASEP formulas•

Remarks:
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Study k particle ASEP and use coordinate Bethe ansatz (cf. 

[Schutz '97] for k=2) to compute Green's functions.

•

Manipulate formulas to extra one-point marginal.•

Approach step initial condition by taking k to infinity and 

observe an integral transform of Cauchy type Fredholm det.

•

Functional analysis to rework for asymptotic analysis.•

Coordinate approach of [Tracy-Widom '08-'09]:

Using k-particle Green's functions can write solution of duality 

ODEs as k! k-fold contour integrals [Imamura-Sasamoto '11]. 

Equivalence to nested formula is non-trivial.
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